Alleviating Data Sparsity for Twitter Sentiment Analysis
نویسندگان
چکیده
Twitter has brought much attention recently as a hot research topic in the domain of sentiment analysis. Training sentiment classifiers from tweets data often faces the data sparsity problem partly due to the large variety of short and irregular forms introduced to tweets because of the 140-character limit. In this work we propose using two different sets of features to alleviate the data sparseness problem. One is the semantic feature set where we extract semantically hidden concepts from tweets and then incorporate them into classifier training through interpolation. Another is the sentiment-topic feature set where we extract latent topics and the associated topic sentiment from tweets, then augment the original feature space with these sentiment-topics. Experimental results on the Stanford Twitter Sentiment Dataset show that both feature sets outperform the baseline model using unigrams only. Moreover, using semantic features rivals the previously reported best result. Using sentimenttopic features achieves 86.3% sentiment classification accuracy, which outperforms existing approaches.
منابع مشابه
On Stopwords, Filtering and Data Sparsity for Sentiment Analysis of Twitter
Sentiment classification over Twitter is usually affected by the noisy nature (abbreviations, irregular forms) of tweets data. A popular procedure to reduce the noise of textual data is to remove stopwords by using pre-compiled stopword lists or more sophisticated methods for dynamic stopword identification. However, the effectiveness of removing stopwords in the context of Twitter sentiment cl...
متن کاملText Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملA Comparative Analysis of Machine Learning Classifiers for Twitter Sentiment Analysis
Twitter popularity has increasingly grown in the last few years making influence on the social, political and business aspects of life. Therefore, sentiment analysis research has put special focus on Twitter. Tweet data have many peculiarities relevant to the use of informal language, slogans, and special characters. Furthermore, training machine learning classifiers from tweets data often face...
متن کاملSentiment Prediction Using Collaborative Filtering
Learning sentiment models from short texts such as tweets is a notoriously challenging problem due to very strong noise and data sparsity. This paper presents a novel, collaborative filtering-based approach for sentiment prediction in twitter conversation threads. Given a set of sentiment holders and sentiment targets, we assume we know the true sentiments for a small fraction of holder-target ...
متن کامل2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework
Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...
متن کامل